USN				 			 	·	 	
	06F <i>C</i>									IONI
	OULC		1 1	1 1					İ	DIA

Sixth Semester B.E. Degree Examination, June/July 2017 Antennas and Propagation

Time: 3 hrs. Max. Marks: 100

Note: Answer any FIVE full questions, selecting atleast TWO questions from each part.

PART - A

- a. Define the following with respect to antenna: i) Directivity ii) Radiation pattern iii) Effective aperture iv) Antenna Field zones. (08 Marks)
 - b. Derive the relation between maximum effective aperture and directivity. (06 Marks)
 - c. The effective apertures of transmitting and receiving antennas in a communication system are $8\lambda^2$ and $12\lambda^2$ respectively, with a separation of 1.5km between them. The electromagnetic wave is travelling with a frequency of 6MHz and the total input power is 25KW. Find the power received by the receiving antenna. (06 Marks)
- 2 a. Derive an expression for the total field and plot the field pattern for two isotropic point sources with same amplitude and equal phase spaced $\lambda/2$ apart. (08 Marks)
 - b. A linear array consists of 4 isotropic point sources. The distance between the adjacent element is $\lambda/2$. The power is applied with equal magnitudes and a phase differences –dr Obtain the field pattern and find BWFN and HPBW. (08 Marks)
 - c. What are Broad side and End fire arrays?

(04 Marks)

- 3 a. Show that the maximum effective aperture of short dipole is equal to 0.119 λ^2 or D = 1.5 and hence show that the directivity of short dipole is 50% more than an isotropic radiator.
 - b. A magnetic field strength of $5\mu\Lambda/m$ is required at a point on $\theta = \pi/2$ and 2km away from an antenna in free space. Neglecting ohmic loss, how much power must the antenna transmits if it is i) a hertzian dipole of length $\lambda/25$? ii) a half wave dipole iii) a quarter wave monopole? (10 Marks)
- 4 a. Derive an expression for the far field components of a loop antenna. (10 Marks)
 - b. Show that the radiation resistance of a small loop antenna consisting of 'N' terms is given

by
$$R_{rad} = 31200 \left(\frac{NA}{\lambda^2}\right)^2 \Omega$$
. (10 Marks)

PART - B

5 a. Explain Babinet's principle with illustrations.

(08 Marks)

b. Derive an equation for the impedance of slot antenna.

(08 Marks)

c. Write a short note on Slot antenna.

(04 Marks)

- 6 a. Write notes on:
 - i) Ultra wide band antennas ii) Turnstile antenna.

(10 Marks)

b. Discuss the design considerations of an antenna used for satellite communications.

(10 Marks)

06EC64

7 a. Describe Ground wave propagation.

(08 Marks)

- b. Derive an expression for resultant electric field strength (E_R) at a point due to space wave propagation. (06 Marks)
- c. The transmitting and receiving antennas with heights 50 meter and 25 meter are used to establish a communication link at 150 MHz with 100 watts power of transmission. Determine i) LOS distance ii) Strength of received signal. (06 Marks)
- 8 a. Define Maximum Usable Frequency (F_{MUF}). Derive an expression of F_{MUF} for curved surface of earth. (08 Marks)
 - b. Explain Skip distance. Derive an expression for skip distance (D), for flat earth surface.

(06 Mark

c. Assume that reflection takes place at a height of 400km and that the maximum electron density in the ionosphere corresponds to a 0.9 refractive index at 10MHz. What will be the range for which MUF is 10MHZ?

i) For Flat earth

ii) For curved earth.

(06 Marks)
